March 24, 2025

Cure Health Life

Wellness Starts Here

Prediction of mental health risk in adolescents

Prediction of mental health risk in adolescents

  • Xiao, Y., Brown, T. T., Snowden, L. R., Chow, J. C.-C. & Mann, J. J. COVID-19 policies, pandemic disruptions, and changes in child mental health and sleep in the United States. JAMA Netw. Open 6, e232716 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Samji, H. et al. Review: Mental health impacts of the COVID-19 pandemic on children and youth – a systematic review. Child Adolesc. Ment. Health 27, 173–189 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Kourgiantakis, T. et al. Navigating inequities in the delivery of youth mental health care during the COVID-19 pandemic: perspectives of youth, families, and service providers. Can. J. Public Health 113, 806–816 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Posner, J. The role of precision medicine in child psychiatry: what can we expect and when? J. Am. Acad. Child Adolesc. Psychiatry 57, 813 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Romer, A. L., Ren, B. & Pizzagalli, D. A. Brain structure relations with psychopathology trajectories in the ABCD Study. J. Am. Acad. Child Adolesc. Psychiatry 62, 895–907 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sripada, C. et al. Widespread attenuating changes in brain connectivity associated with the general factor of psychopathology in 9- and 10-year olds. Transl. Psychiatry 11, 575 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Voorhees, B. W. V. et al. Predicting future risk of depressive episode in adolescents: the Chicago Adolescent Depression Risk Assessment (CADRA). Ann. Fam. Med. 6, 503–511 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • King, M. et al. Development and validation of an international risk prediction algorithm for episodes of major depression in general practice attendees: the PredictD Study. Arch. Gen. Psychiatry 65, 1368–1376 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Wilson, P. W. et al. Prediction of coronary heart disease using risk factor categories. Circulation 97, 1837–1847 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stroup, W. W. Generalized Linear Mixed Models: Modern Concepts, Methods and Applications (CRC, 2012).

  • Shah, J. et al. Multivariate prediction of emerging psychosis in adolescents at high risk for schizophrenia. Schizophr. Res. 141, 189–196 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bruni, O. et al. The Sleep Disturbance Scale for Children (SDSC). Construction and validation of an instrument to evaluate sleep disturbances in childhood and adolescence. J. Sleep Res. 5, 251–261 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pigeon, W. R., Bishop, T. M. & Krueger, K. M. Insomnia as a precipitating factor in new onset mental illness: a systematic review of recent findings. Curr. Psychiatry Rep. 19, 44 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Pigeon, W. R., Pinquart, M. & Conner, K. Meta-analysis of sleep disturbance and suicidal thoughts and behaviors. J. Clin. Psychiatry 73, e1160–e1167 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Telzer, E. H., Goldenberg, D., Fuligni, A. J., Lieberman, M. D. & Gálvan, A. Sleep variability in adolescence is associated with altered brain development. Dev. Cogn. Neurosci. 14, 16–22 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uccella, S. et al. Sleep deprivation and insomnia in adolescence: implications for mental health. Brain Sci. 13, 569 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Freeman, D., Sheaves, B., Waite, F., Harvey, A. G. & Harrison, P. J. Sleep disturbance and psychiatric disorders. Lancet Psychiatry 7, 628–637 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Harvey, A. G., Murray, G., Chandler, R. A. & Soehner, A. Sleep disturbance as transdiagnostic: consideration of neurobiological mechanisms. Clin. Psychol. Rev. 31, 225–235 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Lunsford-Avery, J. R., Bidopia, T., Jackson, L. & Sloan, J. S. Behavioral treatment of insomnia and sleep disturbances in school-aged children and adolescents. Child Adolesc. Psychiatr. Clin. N. Am. 30, 101–116 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Harvey, A. G. et al. A randomized controlled trial of the Transdiagnostic Intervention for Sleep and Circadian Dysfunction (TranS-C) to improve serious mental illness outcomes in a community setting. J. Consult. Clin. Psychol. 89, 537–550 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pettersson, E., Larsson, H., D’Onofrio, B. M. & Lichtenstein, P. Associations between general and specific psychopathology factors and 10-year clinically relevant outcomes in adult Swedish twins and siblings. JAMA Psychiatry 80, 728–737 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moore, T. M. et al. Development of a computerized adaptive screening tool for overall psychopathology (‘p’). J. Psychiatr. Res. 116, 26–33 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, J. D. et al. The general psychopathology ‘p’ factor in adolescence: multi-informant assessment and computerized adaptive testing. Res. Child Adolesc. Psychopathol. 52, 1753–1764 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Antoniou, T. & Mamdani, M. Evaluation of machine learning solutions in medicine. Can. Med. Assoc. J. 193, E1425–E1429 (2021).

    Article 

    Google Scholar 

  • Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Series B 58, 267–288 (1996).

    Article 

    Google Scholar 

  • Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A. & Lawrence, N. D. Dataset Shift in Machine Learning (MIT, 2022).

  • Garavan, H. et al. Recruiting the ABCD sample: design considerations and procedures. Dev. Cogn. Neurosci. 32, 16–22 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karcher, N. R. & Barch, D. M. The ABCD Study: understanding the development of risk for mental and physical health outcomes. Neuropsychopharmacology 46, 131–142 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Felitti, V. J. et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: the Adverse Childhood Experiences (ACE) Study. Am. J. Prev. Med. 14, 245–258 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kind, A. J. et al. Neighborhood socioeconomic disadvantage and 30-day rehospitalization: a retrospective cohort study. Ann. Intern. Med. 161, 765–774 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parlatini, V. et al. White matter alterations in attention-deficit/hyperactivity disorder (ADHD): a systematic review of 129 diffusion imaging studies with meta-analysis. Mol. Psychiatry 28, 4098–4123 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia, J., Chen, N. & Qiu, A. Unraveling multimodal brain signatures: deciphering transdiagnostic dimensions of psychopathology in adolescents. Adv. Intell. Syst. 5, 2300577 (2024).

    Article 

    Google Scholar 

  • Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Verbruggen, F. & Logan, G. D. Response inhibition in the stop-signal paradigm. Trends Cogn. Sci. 12, 418–424 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knutson, B., Westdorp, A., Kaiser, E. & Hommer, D. FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 12, 20–27 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cohen, A., Conley, M., Dellarco, D. & Casey B. The impact of emotional cues on short-term and long-term memory during adolescence. [Abstract]. In Proc. Soc. Neurosci. (2016).

  • Clark, D. A. et al. The general factor of psychopathology in the Adolescent Brain Cognitive Development (ABCD) Study: a comparison of alternative modeling approaches. Clin. Psychol. Sci. 9, 169–182 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murtagh, F. Multilayer perceptrons for classification and regression. Neurocomputing 2, 183–197 (1991).

    Article 

    Google Scholar 

  • Yu, Y., Si, X., Hu, C. & Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31, 1235–1270 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks (Springer, 2012).

  • Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 5998–6008 (2017).

    Google Scholar 

  • Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proc. COMPSTAT2010 (eds Lechevallier, Y. & Saporta, G.) 177–186 (Physica-Verlag, 2010).

  • Nesterov, Y. E. A method for solving a convex programming problem with convergence rate O(1/k2). Dokl. Akad. Nauk. 543–547 (1983).

  • Bergstra, J., Yamins, D. & Cox D. Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In Proc. 30th Int. Conf. Mach. Learn (eds Dasgupta, S. & McAllester, E.) 115–123 (PMLR, 2013).

  • Krogh, A. & Hertz, J. A simple weight decay can improve generalization. Adv. Neural Inf. Process. Syst. 4, 950–957 (1991).

    Google Scholar 

  • Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

    Google Scholar 

  • Efron, B. in Breakthroughs in Statistics, Vol. 2 (eds Kotz, S. & Johnson, N. L.) 569–593 (Springer, 1992).

  • Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural. Inf. Process. Syst. 30, 4765–4774 (2017).

    Google Scholar 

  • Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. In Proc. Int. Conf. Mach. Learn (eds Precup, D. & Teh, Y. W.) 3319–3328 (PMLR, 2017).

  • Elliott, M. R. & Valliant, R. Inference for nonprobability samples. Stat. Sci. 32, 249–264 (2017).

    Article 

    Google Scholar 

  • Hill, E. D. Elliot-D-Hill / abcd. GitHub (2025).

  • link