March 24, 2025

Cure Health Life

Wellness Starts Here

Mast cells: key players in digestive system tumors and their interactions with immune cells

Mast cells: key players in digestive system tumors and their interactions with immune cells

  • Ribatti D, D’Amati A. Hematopoiesis and mast cell development. Int J Mol Sci. 2023;24:10679.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chia SL, Kapoor S, Carvalho C, Bajénoff M, Gentek R. Mast cell ontogeny: from fetal development to life-long health and disease. Immunol Rev. 2023;315:31–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Z, Kurashima Y. Two sides of the coin: mast cells as a key regulator of allergy and acute/chronic inflammation. Cells. 2021;10:1615.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krystel-Whittemore M, Dileepan KN, Wood JG. Mast cell: a multi-functional master cell. Front Immunol. 2015;6:620.

    PubMed 

    Google Scholar 

  • Poto R, Marone G, Galli SJ, Varricchi G. Mast cells: a novel therapeutic avenue for cardiovascular diseases? Cardiovasc Res. 2024;120:681–98.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elieh AKD, Wöhrl S, Bielory L. Mast cell biology at molecular level: a comprehensive review. Clin Rev Allergy Immunol. 2020;58:342–65.

    Article 

    Google Scholar 

  • Oettgen HC. Mast cells in food allergy: inducing immediate reactions and shaping long-term immunity. J Allergy Clin Immunol. 2023;151:21–5.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dispenza MC, Metcalfe DD, Olivera A. Research advances in mast cell biology and their translation into novel therapies for anaphylaxis. J Allergy Clin Immunol Pr. 2023;11:2032–42.

    Article 
    CAS 

    Google Scholar 

  • Porebski G, Dziadowiec A, Rybka H, Kitel R, Kwitniewski M. Mast cell degranulation and bradykinin-induced angioedema—searching for the missing link. Front Immunol. 2024;15:1399459.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thapaliya M, Chompunud NAC, Amponnawarat A, Roy S, Ali H. Mast cell-specific MRGPRX2: a key modulator of neuro-immune interaction in allergic diseases. Curr Allergy Asthma Rep. 2021;21:3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elst J, Sabato V, Faber MA, Bridts CH, Mertens C, Van Houdt M, et al. MRGPRX2 and immediate drug hypersensitivity: insights from cultured human mast cells. J Investig Allergol Clin Immunol. 2021;31:489–99.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roy S, Chompunud NAC, Thapaliya M, Deepak V, Ali H. Multifaceted MRGPRX2: new insight into the role of mast cells in health and disease. J Allergy Clin Immunol. 2021;148:293–308.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tontini C, Bulfone-Paus S. Novel approaches in the inhibition of IgE-induced mast cell reactivity in food allergy. Front Immunol. 2021;12:613461.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rönnberg E, Ghaib A, Ceriol C, Enoksson M, Arock M, Säfholm J, et al. Divergent effects of acute and prolonged interleukin 33 exposure on mast cell IgE-mediated functions. Front Immunol. 2019;10:1361.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Desheva Y, Mamontov A, Petkova N, Karev V, Nazarov P. Mast cell degranulation and histamine release during a/h5n1 influenza infection in influenza-sensitized mice. Life Sci. 2020;258:118230.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao H, Peng X, Ge Y, Liang Y, Yin Y, Li J, et al. Novel reactivation and degranulation of mast cells. Biomed Pharmacother. 2020;127:110157.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kitaura J, Murakami M. Positive and negative roles of lipids in mast cells and allergic responses. Curr Opin Immunol. 2021;72:186–95.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Solimando AG, Desantis V, Ribatti D. Mast cells and interleukins. Int J Mol Sci. 2022;23:14004.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nail HM, Chiu CC, Leung CH, Ahmed M, Wang HD. Exosomal miRNA-mediated intercellular communications and immunomodulatory effects in tumor microenvironments. J Biomed Sci. 2023;30:69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shefler I, Salamon P, Mekori YA. Extracellular vesicles as emerging players in intercellular communication: relevance in mast cell-mediated pathophysiology. Int J Mol Sci. 2021;22:9176.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao W, Chen G, Song L, Xu M, Li H, Wang Y, et al. Temperature regulates rab3a and mast cell-derived exosomal FcεRI to inhibit mast cell activation. Allergy. 2023;78:1707–10.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Souza JD, Santana AC, Da SE, Oliver C, Jamur MC. The role of mast cell specific chymases and tryptases in tumor angiogenesis. Biomed Res. Int. 2015;2015:142359.

    Google Scholar 

  • Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, Mcglynn KA, et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 2020;159:335–49.

    Article 
    PubMed 

    Google Scholar 

  • Wang S, Zheng R, Li J, Zeng H, Li L, Chen R, et al. Global, regional, and national lifetime risks of developing and dying from gastrointestinal cancers in 185 countries: a population-based systematic analysis of GLOBOCAN. Lancet Gastroenterol Hepatol. 2024;9:229–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woźniak E, Owczarczyk-Saczonek A, Lange M, Czarny J, Wygonowska E, Placek W, et al. The role of mast cells in the induction and maintenance of inflammation in selected skin diseases. Int J Mol Sci. 2023;24:7021.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mo S, Zong L, Chen X, Chang X, Lu Z, Yu S, et al. High mast cell density predicts a favorable prognosis in patients with pancreatic neuroendocrine neoplasms. Neuroendocrinology. 2022;112:845–55.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gorzalczany Y, Sagi-Eisenberg R. Role of mast cell-derived adenosine in cancer. Int J Mol Sci. 2019;20:2603.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kannen V, Grant DM, Matthews J. The mast cell-t lymphocyte axis impacts cancer: friend or foe? Cancer Lett. 2024;588:216805.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mody MD, Rocco JW, Yom SS, Haddad RI, Saba NF. Head and neck cancer. Lancet. 2021;398:2289–99.

    Article 
    PubMed 

    Google Scholar 

  • Lipitsä T, Siiskonen H, Naukkarinen A, Harvima IT. Mast cell chymase degrades fibrinogen and fibrin. Br J Dermatol. 2019;181:296–303.

    Article 
    PubMed 

    Google Scholar 

  • Kurihara M, Kirita T, Sasahira T, Ohmori H, Matsushima S, Yamamoto K, et al. Protumoral roles of melanoma inhibitory activity 2 in oral squamous cell carcinoma. Br J Cancer. 2013;108:1460–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao L, Zhang T, Zheng K, Xiao Q, Zhang W, Zhang D, et al. Knockdown of secernin 1 inhibit cell invasion and migration by activating the TGF-β/smad3 pathway in oral squamous cell carcinomas. Sci Rep. 2023;13:14922.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mierke CT, Ballmaier M, Werner U, Manns MP, Welte K, Bischoff SC. Human endothelial cells regulate survival and proliferation of human mast cells. J Exp Med. 2000;192:801–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hemmerlein B, Reinhardt L, Wiechens B, Khromov T, Schliephake H, Brockmeyer P. Is CCL2 an important mediator of mast cell-tumor cell interactions in oral squamous cell carcinoma? Int J Mol Sci. 2023;24:3641.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Almahmoudi R, Salem A, Sieviläinen M, Sundquist E, Almangush A, Toppila-Salmi S, et al. Extracellular interleukin-17f has a protective effect in oral tongue squamous cell carcinoma. Head Neck. 2018;40:2155–65.

    Article 
    PubMed 

    Google Scholar 

  • Almahmoudi R, Salem A, Hadler-Olsen E, Svineng G, Salo T, Al-Samadi A. The effect of interleukin-17f on vasculogenic mimicry in oral tongue squamous cell carcinoma. Cancer Sci. 2021;112:2223–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brockmeyer P, Kling A, Schulz X, Perske C, Schliephake H, Hemmerlein B. High mast cell density indicates a longer overall survival in oral squamous cell carcinoma. Sci Rep. 2017;7:14677.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article 
    PubMed 

    Google Scholar 

  • Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J, et al. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: new estimates from GLOBOCAN 2020. Gastroenterology. 2022;163:649–58.

    Article 
    PubMed 

    Google Scholar 

  • Guo W, Tan F, Huai Q, Wang Z, Shao F, Zhang G, et al. Comprehensive analysis of PD-l1 expression, immune infiltrates, and m6a RNA methylation regulators in esophageal squamous cell carcinoma. Front Immunol. 2021;12:669750.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elpek GO, Gelen T, Aksoy NH, Erdoğan A, Dertsiz L, Demircan A, et al. The prognostic relevance of angiogenesis and mast cells in squamous cell carcinoma of the oesophagus. J Clin Pathol. 2001;54:940–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tinge B, Molin D, Bergqvist M, Ekman S, Bergström S. Mast cells in squamous cell esophageal carcinoma and clinical parameters. Cancer Genomics Proteom. 2010;7:25–9.

    CAS 

    Google Scholar 

  • Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet. 2020;396:635–48.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang S, Sun B, Li W, Yang H, Li N, Zhang X. Fatty acid metabolism is related to the immune microenvironment changes of gastric cancer and RGS2 is a new tumor biomarker. Front Immunol. 2022;13:1065927.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li Y, Hu X, Lin R, Zhou G, Zhao L, Zhao D, et al. Single-cell landscape reveals active cell subtypes and their interaction in the tumor microenvironment of gastric cancer. Theranostics. 2022;12:3818–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sathe A, Grimes SM, Lau BT, Chen J, Suarez C, Huang RJ, et al. Single-cell genomic characterization reveals the cellular reprogramming of the gastric tumor microenvironment. Clin Cancer Res. 2020;26:2640–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang XH, Guo T, Gao XY, Wu XL, Xing XF, Ji JF, et al. Exosome-derived noncoding RNAs in gastric cancer: functions and clinical applications. Mol Cancer. 2021;20:99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yao L, Hou J, Wu X, Lu Y, Jin Z, Yu Z, et al. Cancer-associated fibroblasts impair the cytotoxic function of NK cells in gastric cancer by inducing ferroptosis via iron regulation. Redox Biol. 2023;67:102923.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rogers S, Zhang C, Anagnostidis V, Liddle C, Fishel ML, Gielen F, et al. Cancer-associated fibroblasts influence wnt/PCP signaling in gastric cancer cells by cytoneme-based dissemination of ROR2. Proc Natl Acad Sci USA. 2023;120:e2077355176.

    Article 

    Google Scholar 

  • Shi S, Ye L, Yu X, Jin K, Wu W. Focus on mast cells in the tumor microenvironment: current knowledge and future directions. Biochim Biophys Acta Rev Cancer. 2023;1878:188845.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ammendola M, Sacco R, Zuccalà V, Luposella M, Patruno R, Gadaleta P, et al. Mast cells density positive to tryptase correlate with microvascular density in both primary gastric cancer tissue and loco-regional lymph node metastases from patients that have undergone radical surgery. Int J Mol Sci. 2016;17:1905.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin C, Liu H, Zhang H, Cao Y, Li R, Wu S, et al. Tryptase expression as a prognostic marker in patients with resected gastric cancer. Br J Surg. 2017;104:1037–44.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang JT, Li H, Zhang H, Chen YF, Cao YF, Li RC, et al. Intratumoral IL17-producing cells infiltration correlate with antitumor immune contexture and improved response to adjuvant chemotherapy in gastric cancer. Ann Oncol. 2019;30:266–73.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lv YP, Peng LS, Wang QH, Chen N, Teng YS, Wang TT, et al. Degranulation of mast cells induced by gastric cancer-derived adrenomedullin prompts gastric cancer progression. Cell Death Dis. 2018;9:1034.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eissmann MF, Buchert M, Ernst M. IL33 and mast cells-the key regulators of immune responses in gastrointestinal cancers? Front Immunol. 2020;11:1389.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lv Y, Tian W, Teng Y, Wang P, Zhao Y, Li Z, et al. Tumor-infiltrating mast cells stimulate ICOS(+) regulatory t cells through an IL-33 and IL-2 axis to promote gastric cancer progression. J Adv Res. 2024;57:149–62.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hirano T, Honda T, Kanameishi S, Honda Y, Egawa G, Kitoh A, et al. PD-l1 on mast cells suppresses effector CD8(+) t-cell activation in the skin in murine contact hypersensitivity. J Allergy Clin Immunol. 2021;148:563–73.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lv Y, Zhao Y, Wang X, Chen N, Mao F, Teng Y, et al. Increased intratumoral mast cells foster immune suppression and gastric cancer progression through TNF-α-PD-l1 pathway. J Immunother Cancer. 2019;7:54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, et al. Regulatory mechanisms of PD-1/PD-l1 in cancers. Mol Cancer. 2024;23:108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Printz C. National comprehensive cancer network guidelines for small intestine cancers reflect new findings. Cancer. 2020;126:241.

    Article 
    PubMed 

    Google Scholar 

  • Fujimori S, Hamakubo R, Hoshimoto A, Nishimoto T, Omori J, Akimoto N, et al. Risk factors for small intestinal adenocarcinomas that are common in the proximal small intestine. World J Gastroenterol. 2022;28:5658–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benson AB, Venook AP, Al-Hawary MM, Arain MA, Chen YJ, Ciombor KK, et al. Small bowel adenocarcinoma, version 1.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2019;17:1109–33.

    Article 

    Google Scholar 

  • Robles A, Perez ID, Myneedu K, Deoker A, Sarosiek I, Zuckerman MJ, et al. Mast cells are increased in the small intestinal mucosa of patients with irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol Motil. 2019;31:e13718.

    Article 
    PubMed 

    Google Scholar 

  • Bao C, Abraham SN. Mast cell-sensory neuron crosstalk in allergic diseases. J Allergy Clin Immunol. 2024;153:939–53.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tauber M, Basso L, Martin J, Bostan L, Pinto MM, Thierry GR, et al. Landscape of mast cell populations across organs in mice and humans. J Exp Med. 2023;220:e20230570.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gurish MF, Boyce JA. Mast cell growth, differentiation, and death. Clin Rev Allergy Immunol. 2002;22:107–18.

    Article 
    PubMed 

    Google Scholar 

  • Dwyer DF, Barrett NA, Austen KF. Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat Immunol. 2016;17:878–87.

  • Xing W, Austen KF, Gurish MF, Jones TG. Protease phenotype of constitutive connective tissue and of induced mucosal mast cells in mice is regulated by the tissue. Proc Natl Acad Sci USA. 2011;108:14210–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kővári B, Kim BH, Lauwers GY. The pathology of gastric and duodenal polyps: current concepts. Histopathology. 2021;78:106–24.

    Article 
    PubMed 

    Google Scholar 

  • Saadalla AM, Osman A, Gurish MF, Dennis KL, Blatner NR, Pezeshki A, et al. Mast cells promote small bowel cancer in a tumor stage-specific and cytokine-dependent manner. Proc Natl Acad Sci USA. 2018;115:1588–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dennis KL, Saadalla A, Blatner NR, Wang S, Venkateswaran V, Gounari F, et al. T-cell expression of IL10 is essential for tumor immune surveillance in the small intestine. Cancer Immunol Res. 2015;3:806–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dennis KL, Wang Y, Blatner NR, Wang S, Saadalla A, Trudeau E, et al. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing t cells. Cancer Res. 2013;73:5905–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung AY, Li Q, Blair SJ, De Jesus M, Dennis KL, Levea C, et al. Oral interleukin-10 alleviates polyposis via neutralization of pathogenic t-regulatory cells. Cancer Res. 2014;74:5377–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez F, Ruera CN, Miculan E, Carasi P, Dubois-Camacho K, Garbi L, et al. IL-33 alarmin and its active proinflammatory fragments are released in small intestine in celiac disease. Front Immunol. 2020;11:581445.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaur H, Kaur G, Ali SA. IL-33’s role in the gut immune system: a comprehensive review of its crosstalk and regulation. Life Sci. 2023;327:121868.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Andoh A, Nishida A. Pro- and anti-inflammatory roles of interleukin (IL)-33, IL-36, and IL-38 in inflammatory bowel disease. J Gastroenterol. 2023;58:69–78.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yuan C, Rayasam A, Moe A, Hayward M, Wells C, Szabo A, et al. Interleukin-9 production by type 2 innate lymphoid cells induces paneth cell metaplasia and small intestinal remodeling. Nat Commun. 2023;14:7963.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guilarte M, Vicario M, Martínez C, de Torres I, Lobo B, Pigrau M, et al. Peripheral corticotropin-releasing factor triggers jejunal mast cell activation and abdominal pain in patients with diarrhea-predominant irritable bowel syndrome. Am J Gastroenterol. 2020;115:2047–59.

    Article 
    PubMed 

    Google Scholar 

  • Chang H, Perkins MH, Novaes LS, Qian F, Zhang T, Neckel PH, et al. Stress-sensitive neural circuits change the gut microbiome via duodenal glands. Cell. 2024;187:5393–412.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol. 2019;10:10–27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta N, Yelamanchi R. Pancreatic adenocarcinoma: a review of recent paradigms and advances in epidemiology, clinical diagnosis and management. World J Gastroenterol. 2021;27:3158–81.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Latenstein A, van der Geest L, Bonsing BA, Groot KB, Haj MN, de Hingh I, et al. Nationwide trends in incidence, treatment and survival of pancreatic ductal adenocarcinoma. Eur J Cancer. 2020;125:83–93.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kannan S, Shaik SAP, Sheeza A. Short report—lethal and aggressive pancreatic cancer: molecular pathogenesis, cellular heterogeneity, and biomarkers of pancreatic ductal adenocarcinoma. Eur Rev Med Pharm Sci. 2022;26:1017–9.

    CAS 

    Google Scholar 

  • Karamitopoulou E, Shoni M, Theoharides TC. Increased number of non-degranulated mast cells in pancreatic ductal adenocarcinoma but not in acute pancreatitis. Int J Immunopathol Pharm. 2014;27:213–20.

    Article 
    CAS 

    Google Scholar 

  • Longo V, Tamma R, Brunetti O, Pisconti S, Argentiero A, Silvestris N, et al. Mast cells and angiogenesis in pancreatic ductal adenocarcinoma. Clin Exp Med. 2018;18:319–23.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Esposito I, Friess H, Kappeler A, Shrikhande S, Kleeff J, Ramesh H, et al. Mast cell distribution and activation in chronic pancreatitis. Hum Pathol. 2001;32:1174–83.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tao X, Xiang H, Pan Y, Shang D, Guo J, Gao G, et al. Pancreatitis initiated pancreatic ductal adenocarcinoma: pathophysiology explaining clinical evidence. Pharm Res. 2021;168:105595.

    Article 
    CAS 

    Google Scholar 

  • Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer. 2020;1873:188314.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19:151–72.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Toh MR, Wong E, Wong SH, Ng A, Loo LH, Chow PK, et al. Global epidemiology and genetics of hepatocellular carcinoma. Gastroenterology. 2023;164:766–82.

    Article 
    PubMed 

    Google Scholar 

  • Singal AG, Kanwal F, Llovet JM. Global trends in hepatocellular carcinoma epidemiology: implications for screening, prevention and therapy. Nat Rev Clin Oncol. 2023;20:864–84.

    Article 
    PubMed 

    Google Scholar 

  • Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet. 2022;400:1345–62.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jarido V, Kennedy L, Hargrove L, Demieville J, Thomson J, Stephenson K, et al. The emerging role of mast cells in liver disease. Am J Physiol Gastrointest Liver Physiol. 2017;313:G89–101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dahlin JS, Maurer M, Metcalfe DD, Pejler G, Sagi-Eisenberg R, Nilsson G. The ingenious mast cell: contemporary insights into mast cell behavior and function. Allergy. 2022;77:83–99.

    Article 
    PubMed 

    Google Scholar 

  • Wang W, Shui L, Liu Y, Zheng M. C-kit, a double-edged sword in liver regeneration and diseases. Front Genet. 2021;12:598855.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valent P, Akin C, Hartmann K, Nilsson G, Reiter A, Hermine O, et al. Mast cells as a unique hematopoietic lineage and cell system: from Paul Ehrlich’s visions to precision medicine concepts. Theranostics. 2020;10:10743–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lampiasi N, Azzolina A, Montalto G, Cervello M. Histamine and spontaneously released mast cell granules affect the cell growth of human hepatocellular carcinoma cells. Exp Mol Med. 2007;39:284–94.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wei X, Michelakos T, He Q, Wang X, Chen Y, Kontos F, et al. Association of tumor cell metabolic subtype and immune response with the clinical course of hepatocellular carcinoma. Oncologist. 2023;28:e1031–42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rohr-Udilova N, Klinglmüller F, Schulte-Hermann R, Stift J, Herac M, Salzmann M, et al. Deviations of the immune cell landscape between healthy liver and hepatocellular carcinoma. Sci Rep. 2018;8:6220.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rohr-Udilova N, Tsuchiya K, Timelthaler G, Salzmann M, Meischl T, Wöran K, et al. Morphometric analysis of mast cells in tumor predicts recurrence of hepatocellular carcinoma after liver transplantation. Hepatol Commun. 2021;5:1939–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ali E, Červenková L, Pálek R, Ambrozkiewicz F, Hošek P, Daum O, et al. Prognostic role of macrophages and mast cells in the microenvironment of hepatocellular carcinoma after resection. BMC Cancer. 2024;24:142.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kendall T, Verheij J, Gaudio E, Evert M, Guido M, Goeppert B, et al. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int. 2019;39:7–18.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brindley PJ, Bachini M, Ilyas SI, Khan SA, Loukas A, Sirica AE, et al. Cholangiocarcinoma. Nat Rev Dis Prim. 2021;7:65.

    Article 
    PubMed 

    Google Scholar 

  • Johnson C, Huynh V, Hargrove L, Kennedy L, Graf-Eaton A, Owens J, et al. Inhibition of mast cell-derived histamine decreases human cholangiocarcinoma growth and differentiation via c-kit/stem cell factor-dependent signaling. Am J Pathol. 2016;186:123–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi A, Liu Z, Fan Z, Li K, Liu X, Tang Y, et al. Function of mast cell and bile-cholangiocarcinoma interplay in cholangiocarcinoma microenvironment. Gut. 2024;73:1350–63.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shu L, Li X, Liu Z, Li K, Shi A, Tang Y, et al. Bile exosomal mir-182/183-5p increases cholangiocarcinoma stemness and progression by targeting HPGD and increasing PGE2 generation. Hepatology. 2024;79:307–22.

    Article 
    PubMed 

    Google Scholar 

  • Bo X, Wang J, Suo T, Ni X, Liu H, Shen S, et al. Tumor-infiltrating mast cells predict prognosis and gemcitabine-based adjuvant chemotherapeutic benefit in biliary tract cancer patients. BMC Cancer. 2018;18:313.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Varricchi G, de Paulis A, Marone G, Galli SJ. Future needs in mast cell biology. Int J Mol Sci. 2019;20:4397.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • González MI, Vannan DT, Eksteen B, Flores-Sotelo I, Reyes JL. Mast cells in immune-mediated cholangitis and cholangiocarcinoma. Cells. 2022;11:375.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta S, May FP, Kupfer SS, Murphy CC. Birth cohort colorectal cancer (CRC): implications for research and practice. Clin Gastroenterol Hepatol. 2024;22:455–69.

    Article 
    PubMed 

    Google Scholar 

  • Murphy CC, Zaki TA. Changing epidemiology of colorectal cancer—birth cohort effects and emerging risk factors. Nat Rev Gastroenterol Hepatol. 2024;21:25–34.

    Article 
    PubMed 

    Google Scholar 

  • Azkanaz M, Corominas-Murtra B, Ellenbroek S, Bruens L, Webb AT, Laskaris D, et al. Retrograde movements determine effective stem cell numbers in the intestine. Nature. 2022;607:548–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng S, Li Z, Gao R, Xing B, Gao Y, Yang Y, et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell. 2021;184:792–809.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xie Z, Niu L, Zheng G, Du K, Dai S, Li R, et al. Single-cell analysis unveils activation of mast cells in colorectal cancer microenvironment. Cell Biosci. 2023;13:217.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu X, Li X, Wei H, Liu Y, Li N. Mast cells in colorectal cancer tumour progression, angiogenesis, and lymphangiogenesis. Front Immunol. 2023;14:1209056.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Komi D, Redegeld FA. Role of mast cells in shaping the tumor microenvironment. Clin Rev Allergy Immunol. 2020;58:313–25.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nigam M, Mishra AP, Deb VK, Dimri DB, Tiwari V, Bungau SG, et al. Evaluation of the association of chronic inflammation and cancer: insights and implications. Biomed Pharmacother. 2023;164:115015.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51:27–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheon EC, Khazaie K, Khan MW, Strouch MJ, Krantz SB, Phillips J, et al. Mast cell 5-lipoxygenase activity promotes intestinal polyposis in APCDelta468 mice. Cancer Res. 2011;71:1627–36.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saliba J, Coutaud B, Makhani K, Epstein RN, Jackson J, Park JY, et al. Loss of NFE2l3 protects against inflammation-induced colorectal cancer through modulation of the tumor microenvironment. Oncogene. 2022;41:1563–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang L, Hu DL, Tang B, Cheng Y, Jiao C, Cheng L, et al. NFE2l3 inhibition induces cell cycle arrest at the g0/g1 phase in colorectal cancer cells through downregulating CCND1 and prb1-ser807/811. Dis Markers. 2019;2019:2829798.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bazzi ZA, Sneddon S, Zhang P, Tai IT. Characterization of the immune cell landscape in CRC: clinical implications of tumour-infiltrating leukocytes in early- and late-stage CRC. Front Immunol. 2022;13:978862.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li J, Mo Y, Wei Q, Chen J, Xu G. High infiltration of CD203c(+) mast cells reflects immunosuppression and hinders prognostic benefit in stage II-III colorectal cancer. J Inflamm Res. 2023;16:723–35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song F, Zhang Y, Chen Q, Bi D, Yang M, Lu L, et al. Mast cells inhibit colorectal cancer development by inducing ER stress through secreting cystatin c. Oncogene. 2023;42:209–23.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sakita JY, Elias-Oliveira J, Carlos D, de Souza SE, Almeida LY, Malta TM, et al. Mast cell-t cell axis alters development of colitis-dependent and colitis-independent colorectal tumours: potential for therapeutically targeting via mast cell inhibition. J Immunother Cancer. 2022;10:e004653.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakamura Y, Kinoshita J, Yamaguchi T, Aoki T, Saito H, Hamabe-Horiike T, et al. Crosstalk between cancer-associated fibroblasts and immune cells in peritoneal metastasis: inhibition in the migration of m2 macrophages and mast cells by tranilast. Gastric Cancer. 2022;25:515–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ju Y, Xu D, Liao MM, Sun Y, Bao WD, Yao F, et al. Barriers and opportunities in pancreatic cancer immunotherapy. NPJ Precis Oncol. 2024;8:199.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma Y, Hwang RF, Logsdon CD, Ullrich SE. Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer. Cancer Res. 2013;73:3927–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alashkar AB, Ponath V, Alhamdan F, Dörsam B, Landwehr C, Linder M, et al. BAG6 restricts pancreatic cancer progression by suppressing the release of IL33-presenting extracellular vesicles and the activation of mast cells. Cell Mol Immunol. 2024;21:918–31.

    Article 

    Google Scholar 

  • Gambardella V, Castillo J, Tarazona N, Gimeno-Valiente F, Martínez-Ciarpaglini C, Cabeza-Segura M, et al. The role of tumor-associated macrophages in gastric cancer development and their potential as a therapeutic target. Cancer Treat Rev. 2020;86:102015.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sammarco G, Varricchi G, Ferraro V, Ammendola M, De Fazio M, Altomare DF, et al. Mast cells, angiogenesis and lymphangiogenesis in human gastric cancer. Int J Mol Sci. 2019;20:2106.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eissmann MF, Dijkstra C, Jarnicki A, Phesse T, Brunnberg J, Poh AR, et al. IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization. Nat Commun. 2019;10:2735.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao YB, Yang SH, Shen J, Deng K, Li Q, Wang Y, et al. Interaction between regulatory t cells and mast cells via IL-9 and TGF-β production. Oncol Lett. 2020;20:360.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ligan C, Ma XH, Zhao SL, Zhao W. The regulatory role and mechanism of mast cells in tumor microenvironment. Am J Cancer Res. 2024;14:1–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lichterman JN, Reddy SM. Mast cells: a new frontier for cancer immunotherapy. Cells. 2021;10:1270.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palma AM, Hanes MR, Marshall JS. Mast cell modulation of b cell responses: an under-appreciated partnership in host defence. Front Immunol. 2021;12:718499.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mion F, D’Incà F, Danelli L, Toffoletto B, Guarnotta C, Frossi B, et al. Mast cells control the expansion and differentiation of IL-10-competent b cells. J Immunol. 2014;193:4568–79.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang Z, Zhang B, Li D, Lv M, Huang C, Shen GX, et al. Mast cells mobilize myeloid-derived suppressor cells and treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model. PLoS ONE. 2010;5:e8922.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Danelli L, Frossi B, Gri G, Mion F, Guarnotta C, Bongiovanni L, et al. Mast cells boost myeloid-derived suppressor cell activity and contribute to the development of tumor-favoring microenvironment. Cancer Immunol Res. 2015;3:85–95.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mattei F, Andreone S, Marone G, Gambardella AR, Loffredo S, Varricchi G, et al. Eosinophils in the tumor microenvironment. Adv Exp Med Biol. 2020;1273:1–28.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fuller AD, Whelan KA. The underappreciated role of eosinophils in esophageal cancer. Cell Mol Gastroenterol Hepatol. 2023;16:1036–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui K, Hu S, Mei X, Cheng M. Innate immune cells in the esophageal tumor microenvironment. Front Immunol. 2021;12:654731.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reichman H, Itan M, Rozenberg P, Yarmolovski T, Brazowski E, Varol C, et al. Activated eosinophils exert antitumorigenic activities in colorectal cancer. Cancer Immunol Res. 2019;7:388–400.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Robida PA, Puzzovio PG, Pahima H, Levi-Schaffer F, Bochner BS. Human eosinophils and mast cells: birds of a feather flock together. Immunol Rev. 2018;282:151–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Varricchi G, Galdiero MR, Loffredo S, Lucarini V, Marone G, Mattei F, et al. Eosinophils: the unsung heroes in cancer? Oncoimmunology. 2018;7:e1393134.

    Article 
    PubMed 

    Google Scholar 

  • Kaplan A, Lebwohl M, Giménez-Arnau AM, Hide M, Armstrong AW, Maurer M. Chronic spontaneous urticaria: focus on pathophysiology to unlock treatment advances. Allergy. 2023;78:389–401.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corbière A, Loste A, Gaudenzio N. MRGPRX2 sensing of cationic compounds—a bridge between nociception and skin diseases? Exp Dermatol. 2021;30:193–200.

    Article 
    PubMed 

    Google Scholar 

  • Wong-Rolle A, Wei HK, Zhao C, Jin C. Unexpected guests in the tumor microenvironment: microbiome in cancer. Protein Cell. 2021;12:426–35.

    Article 
    PubMed 

    Google Scholar 

  • Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020;368:973–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrari V, Rescigno M. The intratumoral microbiota: friend or foe? Trends Cancer. 2023;9:472–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tan Q, Ma X, Yang B, Liu Y, Xie Y, Wang X, et al. Periodontitis pathogen porphyromonas gingivalis promotes pancreatic tumorigenesis via neutrophil elastase from tumor-associated neutrophils. Gut Microbes. 2022;14:2073785.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia W, Mao Y, Luo Q, Wu J, Guan Q. Targeting neutrophil elastase is a promising direction for future cancer treatment. Discov Oncol. 2024;15:167.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alam A, Levanduski E, Denz P, Villavicencio HS, Bhatta M, Alhorebi L, et al. Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell. 2022;40:153–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo K, Zhang Y, Xv C, Ji J, Lou G, Guo X, et al. Fusobacterium nucleatum, the communication with colorectal cancer. Biomed Pharmacother. 2019;116:108988.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020;11:583084.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Triner D, Devenport SN, Ramakrishnan SK, Ma X, Frieler RA, Greenson JK, et al. Neutrophils restrict tumor-associated microbiota to reduce growth and invasion of colon tumors in mice. Gastroenterology. 2019;156:1467–82.

    Article 
    PubMed 

    Google Scholar 

  • Mathebela P, Damane BP, Mulaudzi TV, Mkhize-Khwitshana ZL, Gaudji GR, Dlamini Z. Influence of the microbiome metagenomics and epigenomics on gastric cancer. Int J Mol Sci. 2022;23:13750.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu HW, Lai YC. The role of helicobacter pylori neutrophil-activating protein in the pathogenesis of H. Pylori and beyond: from a virulence factor to therapeutic targets and therapeutic agents. Int J Mol Sci. 2022;24:91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schorr L, Mathies M, Elinav E, Puschhof J. Intracellular bacteria in cancer-prospects and debates. NPJ Biofilms Microbiomes. 2023;9:76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li Y, Xing S, Chen F, Li Q, Dou S, Huang Y, et al. Intracellular fusobacterium nucleatum infection attenuates antitumor immunity in esophageal squamous cell carcinoma. Nat Commun. 2023;14:5788.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chai X, Wang J, Li H, Gao C, Li S, Wei C, et al. Intratumor microbiome features reveal antitumor potentials of intrahepatic cholangiocarcinoma. Gut Microbes. 2023;15:2156255.

    Article 
    PubMed 

    Google Scholar 

  • Xue C, Jia J, Gu X, Zhou L, Lu J, Zheng Q, et al. Intratumoral bacteria interact with metabolites and genetic alterations in hepatocellular carcinoma. Signal Transduct Target Ther. 2022;7:335.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neuzillet C, Marchais M, Vacher S, Hilmi M, Schnitzler A, Meseure D, et al. Prognostic value of intratumoral fusobacterium nucleatum and association with immune-related gene expression in oral squamous cell carcinoma patients. Sci Rep. 2021;11:7870.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maun HR, Jackman JK, Choy DF, Loyet KM, Staton TL, Jia G, et al. An allosteric anti-tryptase antibody for the treatment of mast cell-mediated severe asthma. Cell. 2019;179:417–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sulsenti R, Frossi B, Bongiovanni L, Cancila V, Ostano P, Fischetti I, et al. Repurposing of the antiepileptic drug levetiracetam to restrain neuroendocrine prostate cancer and inhibit mast cell support to adenocarcinoma. Front Immunol. 2021;12:622001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leoni C, Bataclan M, Ito-Kureha T, Heissmeyer V, Monticelli S. The mRNA methyltransferase mettl3 modulates cytokine mRNA stability and limits functional responses in mast cells. Nat Commun. 2023;14:3862.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonzalez-Gil A, Li TA, Porell RN, Fernandes SM, Tarbox HE, Lee HS, et al. Isolation, identification, and characterization of the human airway ligand for the eosinophil and mast cell immunoinhibitory receptor siglec-8. J Allergy Clin Immunol. 2021;147:1442–52.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Metz M, Kolkhir P, Altrichter S, Siebenhaar F, Levi-Schaffer F, Youngblood BA, et al. Mast cell silencing: a novel therapeutic approach for urticaria and other mast cell-mediated diseases. Allergy. 2024;79:37–51.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link